Taylor Polynomials

Definition 3.3.1 (Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial of degree n for f at a is

$$
T_{n, a} f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Alternatively,

$$
T_{n, a} f(x)=\sum_{r=0}^{n} \frac{f^{(r)}(a)}{r!}(x-a)^{r},
$$

where $f^{(0)}(x)=f(x)$.
Though it may appear daunting to calculate all these derivatives, if the function f has a trigonometric factor there is often a pattern in the derivatives that can be exploited.

Example 3.3.2 Calculate

$$
T_{8,0}\left(e^{x} \sin x\right) .
$$

Solution If $f(x)=e^{x} \sin x$ then

$$
\begin{aligned}
f(x) & =e^{x} \sin x \\
f^{(1)}(x) & =e^{x} \sin x+e^{x} \cos x \\
f^{(2)}(x) & =e^{x} \sin x+e^{x} \cos x+e^{x} \cos x-e^{x} \sin x \\
& =2 e^{x} \cos x \\
f^{(3)}(x) & =2 e^{x} \cos x-2 e^{x} \sin x \\
f^{(4)}(x) & =2 e^{x} \cos x-2 e^{x} \sin x-2 e^{x} \sin x-2 e^{x} \cos x \\
& =-4 e^{x} \sin x .
\end{aligned}
$$

The important observation is that $f^{(4)}(x)=-4 f(x)$, for this means that

$$
f^{(5)}(x)=-4 f^{(1)}(x), f^{(6)}(x)=-4 f^{(2)}(x), f^{(7)}(x)=-4 f^{(3)}(x)
$$

and

$$
f^{(8)}(x)=-4 f^{(4)}(x)=16 f(x) .
$$

Thus

$$
\begin{aligned}
f(0) & =0, f^{(1)}(0)=1, f^{(2)}(0)=2, f^{(3)}(0)=2, f^{(4)}(0)=0, \\
f^{(5)}(0) & =-4, f^{(6)}(0)=-8, f^{(7)}(0)=-8, f^{(8)}(0)=0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T_{8,0}\left(e^{x} \sin x\right) & =0+x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}+0 \frac{x^{4}}{4!}-4 \frac{x^{5}}{5!}-8 \frac{x^{6}}{6!}-8 \frac{x^{7}}{7!}+0 \frac{x^{8}}{8!} \\
& =x+x^{2}+\frac{x^{3}}{3}-\frac{x^{5}}{30}-\frac{x^{6}}{90}-\frac{x^{7}}{630} .
\end{aligned}
$$

Note When the function f contains trigonometric functions we often find a relationship between f and $f^{(4)}$ as we saw above. Such relations should always be exploited to reduce work.

Illustrating Example 3.3.2 the blue line is $e^{x} \sin x$, the red line is $T_{8,0}\left(e^{x} \sin x\right)$.

This pattern in derivatives can be seen again in

Example 3.3.3

$$
T_{4,0}\left(\cos ^{2} x\right)=1-x^{2}+\frac{1}{3} x^{4}
$$

Solution Let $f(x)=\cos ^{2} x$. Then $f^{(1)}(x)=-2 \cos x \sin x=-\sin 2 x$. It is important to write it in this way because, continuing,

$$
f^{(2)}(x)=-2 \cos 2 x \quad \text { and } \quad f^{(3)}(x)=4 \sin 2 x=-4 f^{(1)}(x) .
$$

This relation between third and first derivatives means that $f^{(n)}(x)=-4 f^{(n-2)}(x)$ for all $n \geq 3$ which simplifies the calculations of

$$
f(0)=1, f^{(1)}(0)=0, f^{(2)}(0)=-2, f^{(3)}(0)=-4 f^{(1)}(0)=0,
$$

and $f^{(4)}(0)=-4 f^{(2)}(0)=8$. Thus

$$
T_{4,0}\left(\cos ^{2} x\right)=1+0 x-2 \frac{x^{2}}{2!}+0 \frac{x^{3}}{3!}+8 \frac{x^{4}}{4!}=1-x^{2}+\frac{x^{4}}{3} .
$$

Illustrating Example 3.3.3.

The next example illustrates a method which can often be applied when f is a quotient.

Example 3.3.4 With

$$
f(x)=\frac{e^{x}}{1+x}
$$

calculate $T_{5,0} f(x)$.
Solution Because differentiating quotients leads to complicated expressions we yet again follow the principle of ridding ourselves of fractions by multiplying up as

$$
(1+x) f(x)=e^{x} .
$$

Then repeated differentiation gives

$$
\begin{aligned}
(1+x) f^{\prime}(x)+f(x) & =e^{x}, \quad \text { thus } f^{\prime}(0)+f(0)=1 . \\
(1+x) f^{\prime \prime}(x)+2 f^{\prime}(x) & =e^{x}, \quad \text { thus } f^{\prime \prime}(0)+2 f^{\prime}(0)=1 . \\
(1+x) f^{(3)}(x)+3 f^{\prime \prime}(x) & =e^{x}, \quad \text { thus } f^{(3)}(0)+3 f^{\prime \prime}(0)=1 . \\
(1+x) f^{(4)}(x)+4 f^{(3)}(x) & =e^{x}, \quad \text { thus } f^{(4)}(0)+4 f^{(3)}(0)=1 . \\
(1+x) f^{(5)}(x)+5 f^{(4)}(x) & =e^{x}, \quad \text { thus } f^{(5)}(0)+5 f^{(4)}(0)=1 .
\end{aligned}
$$

Starting from $f(0)=1$ we can solve to get $f^{\prime}(0)=0, f^{\prime \prime}(0)=1, f^{(3)}(0)=-2$, $f^{(4)}(0)=9$ and $f^{(5)}(0)=-44$. Then

$$
\begin{aligned}
T_{5,0}\left(\frac{e^{x}}{1+x}\right) & =1+0 x+1 \frac{x^{2}}{2!}-2 \frac{x^{3}}{3!}+9 \frac{x^{4}}{4!}-44 \frac{x^{5}}{5!} \\
& =1+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+\frac{3}{8} x^{4}-\frac{11}{30} x^{5}
\end{aligned}
$$

Illustrating Example 3.3.4

Questions; how well does $T_{n, a} f(x)$ approximate $f(x)$, does $T_{n, a} f(x)$ converge as $n \rightarrow \infty$ and, if it does, does it converge to $f(x)$? These questions can be answered by studying the difference $f(x)-T_{n, a} f(x)$.

Definition 3.3.5 The Remainder, $R_{n, a} f(x)$, is defined by

$$
\begin{equation*}
R_{n, a} f(x)=f(x)-T_{n, a} f(x) . \tag{1}
\end{equation*}
$$

Note that when $t=x$ in the definition of $T_{n, t} f(x)$ we get

$$
\begin{align*}
T_{n, x} f(x) & =f(x)+f^{\prime}(x)(x-x)+\frac{f^{\prime \prime}(x)}{2!}(x-x)^{2}+\ldots+\frac{f^{(n)}(x)}{n!}(x-x)^{n} \\
& =f(x) \tag{2}
\end{align*}
$$

Thus the remainder can be written as

$$
R_{n, a} f(x)=T_{n, x} f(x)-T_{n, a} f(x)
$$

So we are looking at the difference of a function of t, namely $T_{n, t} f(x)$, at $t=x$ and $t=a$. With an application of the Mean Value Theorem in mind, this makes us ask how $T_{n, t} f(x)$ changes as t varies.

We start with quite an amazing result, that the derivative w.r.t t of the polynomial $T_{n, t} f(x)$ should be so simple!

Lemma 3.3.6 If the first $n+1$ derivatives of f exist on an open neighbourhood of x then

$$
\frac{d}{d t} T_{n, t} f(x)=\frac{(x-t)^{n}}{n!} f^{(n+1)}(t)
$$

for all t in the open neighbourhood.
Proof in the lectures observes at one point that a term from one bracket in a series cancels a term in the next bracket. Here we give a more formal proof, based on manipulating series.

By definition

$$
T_{n, t} f(x)=\sum_{r=0}^{n} \frac{f^{(r)}(t)}{r!}(x-t)^{r} .
$$

This is differentiable w.r.t t if, and only if, every $f^{(r)}, 0 \leq r \leq n$ is differentiable. Yet $f^{(i+1)}$ differentiable implies $f^{(i)}$ differentiable so $T_{n, t} f$ is differentiable if, and only if, $f^{(n)}$, is differentiable, that is, f is $n+1$ times
differentiable. Since we are assuming this we can continue:

$$
\begin{aligned}
\frac{d}{d t} T_{n, t} f(x) & =\frac{d}{d t} \sum_{r=0}^{n} \frac{f^{(r)}(t)}{r!}(x-t)^{r} \\
& =\frac{d}{d t}\left(f(t)+\sum_{r=1}^{n} \frac{f^{(r)}(t)}{r!}(x-t)^{r}\right) \\
& =f^{(1)}(t)+\sum_{r=1}^{n}\left(\frac{f^{(r+1)}(t)}{r!}(x-t)^{r}-\frac{f^{(r)}(t)}{(r-1)!}(x-t)^{r-1}\right) \\
& =f^{(1)}(t)+\sum_{r=1}^{n} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r}-\sum_{r=1}^{n} \frac{f^{(r)}(t)}{(r-1)!}(x-t)^{r-1}
\end{aligned}
$$

In the second sum we change variable from r to $r-1$, which we then relabel as r, so r now runs from 0 to $n-1$. Thus

$$
\begin{aligned}
\frac{d}{d t} T_{n, t} f(x)= & f^{(1)}(t)+\sum_{r=1}^{n} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r}-\sum_{r=0}^{n-1} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r} \\
= & f^{(1)}(t)+\left(\sum_{r=1}^{n-1} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r}+\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}\right) \\
& \quad-\left(\sum_{r=1}^{n-1} \frac{f^{(r+1)}(t)}{r!}(x-t)^{r}+f^{(1)}(t)\right) \\
= & \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} .
\end{aligned}
$$

An application of the Mean Value Theorem gives
Theorem 3.3.7 Taylor's Theorem with Cauchy's form of the error. If the first $n+1$ derivatives of f exist on an open interval containing a and x then

$$
\begin{equation*}
R_{n, a} f(x)=\frac{f^{(n+1)}(c)}{n!}(x-c)^{n}(x-a) \tag{3}
\end{equation*}
$$

for some c between a and x.

Proof Consider

$$
\begin{aligned}
\frac{R_{n, a} f(x)}{x-a} & =\frac{f(x)-T_{n, a} f(x)}{x-a} \text { by definition of } R_{n, a}, \\
& =\frac{T_{n, x} f(x)-T_{n, a} f(x)}{x-a} .
\end{aligned}
$$

by (2). Let $h(t)=T_{n, t} f(x)$ so we can rewrite the last equality as

$$
\frac{R_{n, a} f(x)}{x-a}=\frac{h(x)-h(a)}{x-a}=h^{\prime}(c),
$$

for some c between a and x by the Mean Value Theorem applied to h. Continuing

$$
h^{\prime}(c)=\left.\frac{d}{d t} T_{n, t} f(x)\right|_{t=c}=\frac{(x-c)^{n}}{n!} f^{(n+1)}(c),
$$

by Lemma.
This result has a weakness in that the unknown c occurs in two terms on the right hand side. Strange that Cauchy's error was derived using the Mean Value Theorem; what would follow from Cauchy's Mean Value Theorem? Recall Cauchy's Mean Value Theorem, that if g, h are continuous on $[a, b]$, differentiable on (a, b) and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then there exists $c \in(a, b)$ such that

$$
\frac{h(b)-h(a)}{g(b)-g(a)}=\frac{h^{\prime}(c)}{g^{\prime}(c)} .
$$

An argument based on this gives
Theorem 3.3.8 Taylor's Theorem with Lagrange's form of the error (1797). If the first $n+1$ derivatives of f exist on an open interval containing a and x then

$$
\begin{equation*}
R_{n, a} f(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \tag{4}
\end{equation*}
$$

for some c between a and x.
Proof Consider x to be fixed. As in previous proof let $h(t)=T_{n, t} f(x)$ and g to be chosen but continuous on $[a, x]$, differentiable on (a, x) and with $g^{\prime}(t) \neq 0$ for all $t \in(a, x)$. Then

$$
\begin{aligned}
\frac{R_{n, a} f(x)}{g(x)-g(a)} & =\frac{T_{n, x} f(x)-T_{n, a} f(x)}{g(x)-g(a)} \quad \text { as in above proof, } \\
& =\left.\frac{1}{g^{\prime}(c)} \frac{d}{d t} T_{n, t} f(x)\right|_{t=c} \quad \text { by Cauchy's M. V. Theorem, } \\
& =\frac{(x-c)^{n}}{n!g^{\prime}(c)} f^{(n+1)}(c)
\end{aligned}
$$

by Lemma. If we choose $g^{\prime}(t)=(x-t)^{n}$ then

$$
\frac{R_{n, a} f(x)}{g(x)-g(a)}=\frac{(x-c)^{n}}{n!(x-c)^{n}} f^{(n+1)}(c)=\frac{f^{(n+1)}(c)}{n!}
$$

which multiplies up to give

$$
R_{n, a} f(x)=(g(x)-g(a)) \frac{f^{(n+1)}(c)}{n!}
$$

The right hand side now only contains one occurrence of the unknown c, as required. Integrate this choice of g^{\prime} to get

$$
g(x)-g(a)=\int_{a}^{x} g^{\prime}(t) d t=\frac{(x-a)^{n+1}}{n+1}
$$

Thus

$$
R_{n, a} f(x)=(g(x)-g(a)) \frac{f^{(n+1)}(c)}{n!}=\frac{(x-a)^{n+1}}{(n+1)} \frac{f^{(n+1)}(c)}{n!}
$$

as required.
In Theorem 3.3.8 we now have only one occurrence of the unknown c, along with a larger denominator. If we set $h=x-a$ in Taylor's Theorem with Lagrange's error we get

$$
\begin{aligned}
f(a+h)= & f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\ldots+\frac{h^{n}}{n!} f^{(n)}(a)+ \\
& +\frac{h^{n+1}}{(n+1)!} f^{(n+1)}(a+\theta h)
\end{aligned}
$$

for some $0<\theta<1$.

Taylor's Theorem is often used in Maclaurin's Form which simply has $a=0$:

$$
f(x)=\sum_{r=0}^{n} \frac{f^{(r)}(0)}{r!} x^{r}+\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

for some c between 0 and x.
As a first application of how well $T_{n, a} f(x)$ approximates $f(x)$,

Example 3.3.9

$$
\left|e^{x} \sin x-\left(x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}\right)\right| \leq \frac{e^{|c|}}{6} x^{4} .
$$

for some c between 0 and x.
Solution in Tutorial Note that from the workings of Example 3.3.2,

$$
T_{3,0}\left(e^{x} \sin x\right)=0+x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}, \quad \text { and } \quad f^{(4)}(x)=-4 e^{x} \sin x .
$$

Then

$$
\left|e^{x} \sin x-\left(x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}\right)\right|=\frac{4\left|e^{c} \sin c\right|}{4!} x^{4} \leq \frac{e^{|c|}}{6} x^{4} .
$$

for some c between 0 and x.
You can, in fact, improve this result because $f^{(4)}(0)=0$. For then $T_{3,0}\left(e^{x} \sin x\right)=T_{4,0}\left(e^{x} \sin x\right)$. Thus

$$
\left|e^{x} \sin x-\left(x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}\right)\right|=\frac{\left|f^{(5)}(c)\right|}{5!}|x|^{5} .
$$

Now note that $f^{(4)}(x)=-4 e^{x} \sin x$ implies $f^{(5)}(x)=-4\left(e^{x} \sin x+e^{x} \cos x\right)$. So $\left|f^{(5)}(c)\right| \leq 8 e^{c}$, and thus

$$
\left|e^{x} \sin x-\left(x+2 \frac{x^{2}}{2!}+2 \frac{x^{3}}{3!}\right)\right| \leq \frac{e^{|c|}}{15}|x|^{5} .
$$

Aside, one can do better than $|\sin x+\cos x| \leq|\sin x|+|\cos x| \leq 2$ by noting that $\sin x+\cos x=y+\sqrt{1-y^{2}}$ where $y=\sin x$. Look for turning points (at $y= \pm \sqrt{4 / 5}$) and thus a maximum of $\sqrt{4 / 5}+\sqrt{1 / 5} \approx 1.34 \ldots$

Example 3.3.10 Use Lagrange's form for the error to show that

$$
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right| \leq \frac{2}{15}|x|^{5}
$$

Hence show that

$$
\lim _{x \rightarrow 0} \frac{\cos ^{2} x-1+x^{2}}{x^{4}}=\frac{1}{3}
$$

Solution From Example 3.3.3 we have

$$
T_{4,0}\left(\cos ^{2} x\right)=1-x^{2}+\frac{1}{3} x^{4}
$$

Thus

$$
\begin{aligned}
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right| & =\left|\cos ^{2} x-T_{4,0}\left(\cos ^{2} x\right)\right| \\
& =\left|R_{4,0}\left(\cos ^{2} x\right)\right| \\
& =\left|\frac{f^{(5)}(c)}{5!} x^{5}\right|
\end{aligned}
$$

for some c between 0 and x, by Lagrange's error. As seen previously,

$$
f^{(5)}(x)=-4 f^{(3)}(x)=16 f^{(1)}(x)=-16 \sin 2 x .
$$

Thus

$$
\left|\frac{f^{(5)}(c)}{5!} x^{5}\right|=\frac{16}{5!}|\sin 2 c||x|^{5} \leq \frac{2}{15}|x|^{5}
$$

This gives the first stated result. For the second, divide through by x^{4} to get

$$
\left|\frac{\cos ^{2} x-1+x^{2}}{x^{4}}-\frac{1}{3}\right| \leq \frac{2}{15}|x|
$$

This can be opened out as

$$
\frac{1}{3}-\frac{2}{15}|x| \leq \frac{\cos ^{2} x-1+x^{2}}{x^{4}} \leq \frac{1}{3}+\frac{2}{15}|x|
$$

Let $x \rightarrow 0$ and quote the Sandwich Rule to get result.

Aside, we see that $f^{(5)}(0)=0$ which means that $T_{4,0}\left(\cos ^{2} x\right)=T_{5,0}\left(\cos ^{2} x\right)$. Then

$$
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right|=\left|R_{5,0}\left(\cos ^{2} x\right)\right|=\left|\frac{f^{(6)}(c)}{6!} x^{6}\right| .
$$

Now $f^{(6)}(x)=16 f^{(2)}(x)=-32 \cos 2 x$. Thus

$$
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right|=\frac{32}{6!}|\cos 2 c||x|^{6} \leq \frac{2}{45}|x|^{6} .
$$

This is an improvement over the previous bound as long as $|x|<3$.

Taylor Series

Definition 3.3.11 If all the higher derivatives of f exist in some neighbourhood of $a \in \mathbb{R}$ then the Taylor Series of f at a is

$$
\begin{equation*}
\sum_{r=0}^{\infty} \frac{f^{(r)}(a)}{r!}(x-a)^{r} . \tag{5}
\end{equation*}
$$

There are two immediate questions.
Question 1. Does the series converge?
This series trivially converges at $x=a$. Being a power series we can use tests from MATH10242, such as the Ratio Test or Comparison Tests to find an $R \geq 0$ for which

- if $|x-a|<R$ then the series converges at this x,
- if $|x-a|>R$ then the series diverges at this x,
- while if $|x-a|=R$ the series may, or may not converge at such x.

Here R is called the radius of convergence. It is possible that $R=\infty$, for example the series for e^{x}. It is possible that $R=0$; an example was given by Lerch in 1888 of a function well-defined on \mathbb{R} yet whose Taylor series diverges for all $x \neq 0$.

Question 2. If the Taylor Series of f converges at $x \in \mathbb{R}$ does it converge to $f(x)$?

Even if $R>0$ and $x_{0} \neq a$ is in the interval of convergence, there is no assurance that the value of the series at x_{0} equals $f\left(x_{0}\right)$. This is the case with Cauchy's example (1823), of

$$
f(x)=e^{-1 / x^{2}} \text { for } x \neq 0 \text { with } f(0)=0 .
$$

I leave this as a (hard) exercise for students. You will have to calculate $f^{(n)}(0)$ for each $n \geq 1$ by first principles, using the limit definition. It can be shown in this way that $f^{(n)}(0)=0$ for all $n \geq 1$. Thus the Taylor Series for $f(x)$ is

$$
0+0 x+0 \frac{x^{2}}{2!}+0 \frac{x^{3}}{3!}+\ldots
$$

which converges for all $x \in \mathbb{R}$. But it's sum is $f(x)$ only when $x=0$.

Yet Question 2 does have an answer: Recall from the first year course, Sequences and Series, an infinite series is defined to be the limit of the sequence of partial sums, if the limit exists. Thus

$$
\sum_{r=0}^{\infty} \frac{f^{(r)}(a)}{r!}(x-a)^{r}=\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{f^{(r)}(a)}{r!}(x-a)^{r}=\lim _{n \rightarrow \infty} T_{n, a} f(x)
$$

So the Taylor Series of f converges to f for those x for which

$$
\lim _{n \rightarrow \infty} T_{n, a} f(x)=f(x) .
$$

This can be rearranged to $\lim _{n \rightarrow \infty}\left(f(x)-T_{n, a} f(x)\right)=0$, the same as

$$
\lim _{n \rightarrow \infty} R_{n, a} f(x)=0 .
$$

In most cases the limit of the remainder term as $n \rightarrow \infty$ will make use of the following result.

Lemma 3.3.12 For any $y \in \mathbb{R}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow 0} \frac{y^{n}}{n!}=0 \tag{6}
\end{equation*}
$$

Proof It is a result from First Year Sequences and Series that $\left\{y^{n} / n!\right\}_{n \geq 1}$ is a null sequence.

It can be noted though that we have been assuming this result implicitly in this course. We have defined e^{y} by the infinite series $\sum_{r=0}^{n} y^{r} / r$!. Yet if an infinite series converges its terms must tend to zero, which is the statement of this Lemma.

Application Consider Lagrange's form of the error term

$$
R_{n, 0} f(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} .
$$

Assume we have a bound on the derivatives of f of the form

$$
\begin{equation*}
\left|f^{(n)}(x)\right| \leq g(x) C^{n} \tag{7}
\end{equation*}
$$

for some constant $C>0$, and positive function $g(x)$, for all $n \geq 1$. Then

$$
\left|R_{n, 0} f(x)\right| \leq g(c) \frac{(C|x|)^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$, by (6), for the x for which (7) holds. That is, for such x, $R_{n, 0} f(x) \rightarrow 0$, i.e. $T_{n, 0} f(x) \rightarrow f(x)$ as $n \rightarrow \infty$.

Example 3.3.13 Find the Taylor Series for $\cos ^{2} x$ around $a=0$ and show that the series converges to $\cos ^{2} x$ for all $x \in \mathbb{R}$.

Solution If $f(x)=\cos ^{2} x$ then $f^{(1)}(x)=-2 \cos x \sin x=-\sin (2 x)$ and, as seen before, $f^{(n)}(x)=-4 f^{(n-2)}(x)$ for all $n \geq 3$.

If n is odd then $f^{(n)}(0)$ will be a multiple of $f^{(1)}(0)=0$. So the only non-zero terms will come from even n.

If $n=2 r$ then

$$
f^{(n)}(x)=(-4)^{r-1} f^{(2)}(x)=-2(-4)^{r-1} \cos 2 x=(-1)^{r} 2^{n-1} \cos 2 x .
$$

Thus $f^{(n)}(0)=(-1)^{r} 2^{n-1}$ if $n=2 r$ is even.
Hence the Taylor Series for $\cos ^{2} x$ is

$$
1+\sum_{\substack{n=1 \\ n=2 r \text { even }}}^{\infty}(-1)^{r} 2^{n-1} \frac{x^{n}}{n!}=1+\sum_{r=1}^{\infty}(-1)^{r} 2^{2 r-1} \frac{x^{2 r}}{(2 r)!}
$$

For what x does $\lim _{n \rightarrow \infty} R_{n, 0}\left(\cos ^{2} x\right)=0$? By Lagrange's form of the error

$$
R_{n, 0}\left(\cos ^{2} x\right)=f^{(n+1)}(c) \frac{x^{n+1}}{(n+1)!}
$$

for some c between 0 and x. In the present case, we look at the modulus so we don't worry about the sign, when

$$
\left|f^{(n+1)}(c)\right|= \begin{cases}2^{n}|\cos 2 c| & \text { if } n+1 \text { is even } \\ 2^{n+1}|\sin 2 c| & \text { if } n+1 \text { is odd }\end{cases}
$$

Then $\left|f^{(n+1)}(c)\right| \leq 2^{n+1}$ in both cases. Thus,

$$
\left|R_{n, 0}\left(\cos ^{2} x\right)\right| \leq \frac{(2|x|)^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$ for any $x \in \mathbb{R}$ by the Lemma above,. Hence the Taylor Series for $\cos ^{2} x$ converges to $\cos ^{2} x$ for all $x \in \mathbb{R}$.

Example 3.3.14 The Taylor Series for $(1+x)^{t}$ for $t \in \mathbb{R}$, is

$$
\sum_{r=0}^{\infty} \frac{t(t-1) \ldots(t-r+1)}{r!} x^{r},
$$

and this converges to $(1+x)^{t}$ when $-1<x<1$. This is a generalisation of the Binomial Theorem.

Solution see Appendix.
Example 3.3.15 The Taylor Series for $\ln (1+x)$ is

$$
\sum_{r=1}^{\infty} \frac{(-1)^{r-1} x^{r}}{r}
$$

and this converges to $\ln (1+x)$ when $-1<x \leq 1$. If we put $x=1$ we get

$$
\begin{equation*}
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots . \tag{8}
\end{equation*}
$$

Solution see Appendix.

